Challenges for water suppliers and government regarding impact of agricultural land use

Report from Lower Saxony, Germany

Dr. Christina Aue
Water Board of Oldenburg and East Frisia (OOWV)

Drinking water since 1948
Investments 2012 15 Mio. €

Waste water treatment seit 1999
Investments 2012 14 Mio. €

Clients ca. 1,1 Mio.

Staff 653

Further tasks: Urban Drainage (City of Oldenburg), Public Information, European Project Cooperation
Protection of the resource „groundwater“ by geology

Oldenburg
Bremen

Groundwater main source for drinking water
- deep aquifers covered by clay and loam
- clay layers broken with geological features
- vulnerable sandy aquifers

Protection of the resource "groundwater" by geology
Protection of the resource „groundwater“

- EU-Water Framework Directive
- EU-Nitrat Directive
- Drinking water regulation (D)

- Fertilizer decree
 (Federal law: Düngeverordnung)
- Protection decree for water protection areas
 (released by the communities)
- Cooperation with farmers „voluntary agreements“
 (based on the water abstraction charge in Lower Saxony)
- Investments by regional public water supplier

Groundwater protection

2014, May 19th Governing WEF-Nexus 6
Groundwater protection programme by the regional water supplier OOWV

Groundwater protection

- Deepening of the wells
- Afforestation
- Cooperation with farmers
- Organic farming

Public information and relation

2014, May 19th

Governing WEF-Nexus
Groundwater protection (OOWV) Organic farming

- Less nitrogen
- No pesticides
Nitrate (mg/l) in drinking water wells (Waterworks Holdorf)

14 shallow production wells 7 shallow + 7 deep production wells

Groundwater protection by deepening the wells

Drinking water limit

Nitrat [mg/l] im Rohwasser

Nitrate (mg/l) in drinking water wells (Waterworks Holdorf)
Development of nitrate concentration in groundwater (water winning area - waterworks Holdorf)
Groundwater quality in water winning areas

Waterworks Großenkneten:

Intensive agricultural land use - average nitrate content in 16 observation wells

Shallow groundwater, 5 m below groundwater surface
Goundwater quality in water winning areas

Waterworks Thülsfelde:

Intensive agricultural land use - Average nitrate content in 11 observation wells

Shallow groundwater 5 m below groundwater surface

Drinking water limit: 50 mg/l
Groundwater quality in Lower Saxony

In Lower Saxony drinking water comes mainly from groundwater.

Evaluation of the groundwater quality regarding EU-WFD:

50 mg/l Nitrat limit regarding drinking water is exceeded in 60% of the groundwater bodies in Lower Saxony.
A new actor has come on the scene - biomass digesters
Development of biogas in Lower Saxony

Quelle: MJ Niedersachsen, ML Niedersachsen, Landesamt für Statistik, Darstellung OOWV
Changes in land use due to biogas (Germany)

Change of arable land use due to new sector „biogas“, Here: maize in 1.000 ha (Germany)

Source: Deutsche Maiskommitee
Globalization of food production

Annually ca. 2.4 Mio. t fodder imported to Germany
↓ (Soja, wheat, barley, maize, sunflower-, palmkernelextraction, a.s.o.)

- 2.6 Mio.
- 10.8 Mio.
- 103 Mio.

• 1.457 Biogasplants in Lower Saxony

38.7 Mio. t liquid manure
8.1 Mio. t solid manure
9.9 Mio. t manure from biogasplants (calculated input of maize)

Source: LWK- Nährstoffbericht, 2013
Additional side effect: Ploughing of grassland (Lower Saxony)

- Increasing numbers of bioenergy plants in Lower Saxony
- Loss of grassland in Lower Saxony (in WWA: 34,000 ha seit 1990)
- Increasing ha of maize (in WWA: 20,000 ha von 2005 bis 2010)
- Increasing animal density (counties of Cloppenburg and Vechta > 4 Livestockunits/ha)

Source: NLWKN - 2013
Consequence of biogas-production in water protection area

N (kg/ha) annually leached by Maize in Water protection area of Thülsfelde

<table>
<thead>
<tr>
<th>Year</th>
<th>Leached (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-2004</td>
<td>80,000</td>
</tr>
<tr>
<td>2005-2011</td>
<td>140,000</td>
</tr>
</tbody>
</table>
Challenges for Lower Saxony to reach the aims of the EU-WFD

• Rising amounts of organic manure
 – animal husbandry ongoing growing sector
 – bioenergy plants

• Further aspects
 – ploughing of grassland (nitrogen and carbon release)
 – Higher percentages of maize on arable land due to demand of bioenergy plants
 – Rising values for residual nitrogen in autumn in soil, leached out towards groundwater
Challenges regarding ecosystem levels

<table>
<thead>
<tr>
<th>Levels within the ecosystem</th>
<th>Evaluation parameters</th>
<th>Existing legal targets</th>
<th>Values in WPA Grossenkneten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landuse</td>
<td>Landuse: for example % fallow plots, % maize, % forest</td>
<td>no</td>
<td>> 31% of maize</td>
</tr>
<tr>
<td>Soil</td>
<td>kg Nmin/ ha (soil sample 0-90 cm) in autumn to evaluate the efficiency of the applied measures</td>
<td>no</td>
<td>> 90 kg N/ha</td>
</tr>
<tr>
<td>Percolating water</td>
<td>Nitrate concentration under agricultural landuse</td>
<td>no</td>
<td>> 133 mg/l NO₃</td>
</tr>
<tr>
<td>(unsaturated zone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow Groundwater</td>
<td>Nitrate concentration in observation wells (mg Nitrat/l, ug Pestizide/l, ug Metabolite of Pestizide/l)</td>
<td>< 50 mg Nitrate/l (EU - WFD)*</td>
<td>> 50 mg/l Nitrate</td>
</tr>
<tr>
<td>Deep Groundwater,</td>
<td>Nitrate concentration in production wells (mg Nitrat/l, ug Pesticide/l, ug Metabolite of Pesticide/l)</td>
<td>< 50 mg Nitrate/l (Drinking water act)</td>
<td>6 mg/l Nitrate</td>
</tr>
<tr>
<td>Location of the wells</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Missing links": Existing legal framework for agricultural production is either not defining targets ↑, or not appropriate to respond to the pressure already there
Making groundwater protection suitable for future

→ Urgent need for an effective amendment of the German Fertilizer law in 2014/15:
 – Inclusion of biogas slurry (N coming from plants) into the 170 kg N/ha limit for N from organic manure
 – Obligation towards planning manuring
 – Less reductions by considering the effectiveness of N in organic fertilizers
 – Improved methods to calculate the nutrient balance on farm level
 – Effective systems to calculate and control the needed export of manure from farm
 – Longer closing time for spraying slurry
 – Effective controlling system and sanctions
 – Cheap and easy parameters for monitoring schemes
Monitoring success

Results in residual nitrogen (kg N/ha/ 90 cm soil) in autumn on plots owned by OOWV 241 samples from arable land with contract to the farmer (2013)

kg autumn N_{min}/ha => potential pollution with nitrate /l in percolating water

$Autumn \ N_{min}\ (kg \ N/ha) * 443 * \text{exchange frequency (1)} = \ mg \ Nitrat/l$

Percolating rate (here: 350 mm)
Less precaution due to changing priorities

Precaution regarding vital services: ↓

Quality of service of general interest: ↓ Need to adjust instruments to secure high standards

Natural resources: Keen competition regarding exploitation
Strong drivers anticipating groundwater protection

EU targets / „Kyoto“: “CO₂-Reduction“ → National Action plan 2020 (D)

- 13,2% of transport energy from energy crops
- 30% of electricity from renewable energy
- 14% of heating energy from renewable energy

+ shortage of fuel/gasoline + rising prices at food/land markets
+ market for new technologies + rising demand on water rights

Support of environmental schemes

Support of renewable energy

2014, May 19th
In the last 25 years our customers had to pay approximately 100 Million € for groundwater protection measures!

And still the nitrate concentration has an upward trend in our water protection areas!!

Now we demand a sharper administrative law!!!
Vielen Dank für Ihre Aufmerksamkeit.